РЫЛЬСКИЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ КОЛЛЕДЖ – ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ» (МГТУ ГА)

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.14 АРХИТЕКТУРА ЭВМ И ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

по специальности среднего профессионального образования 09.02.01 «Компьютерные системы и комплексы»

Рабочая программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта (далее — ФГОС) по специальности среднего профессионального образования (далее СПО), утвержденного Приказом Минобрнауки России от 28.07.2014 г. № 849 09.02.01 Компьютерные системы и комплексы (базовой подготовки)

Организация-разработчик: Рыльский авиационный технический колледж — филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет гражданской авиапии» (МГТУ ГА)

авиации» (IVII I У I A)
Программу составил: Сюрин Ю.В., преподаватель Рыльского АТК — филиала МГТУ ГА
Рецензент: Жуковский А.С., преподаватель Рыльского АТК — филиала МГТУ ГА
Рабочая программа обсуждена и одобрена на заседании цикловой комиссии вычислительной техники.
Протокол № от «»2022 г.
Председатель цикловой комиссии вычислительной техники Семенихин В. А.
Рабочая программа рассмотрена и рекомендована методическим советом колледжа.
Протокол № от «» 2022 г.
Метолист Л. В. Ковынёва

СОДЕРЖАНИЕ

ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	
УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	
КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	

ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.14 АРХИТЕКТУРА ЭВМ И ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

1.1.Область применения рабочей программы

Рабочая программа учебной дисциплины является частью программы подготовки специалистов среднего звена в соответствии с ФГОС СПО по специальности 09.02.01 «Компьютерные системы и комплексы»

1.2. Место учебной дисциплины в структуре программы подготовки специалистов среднего звена

Учебная дисциплина ОП.14 Архитектура ЭВМ и вычислительных систем относится к циклу общепрофессиональных дисциплин ППССЗ

1.3. Цели и задачи дисциплины - требования к результатам освоения дисциплины

В результате освоения дисциплины обучающийся должен уметь:

В результате освоения учебной дисциплины обучающийся должен уметь:

- определять оптимальную конфигурацию оборудования и характеристики устройств для конкретных задач;
- идентифицировать основные узлы персонального компьютера, разъемы для подключения внешних устройств;

В результате освоения учебной дисциплины обучающийся должен знать:

- построение цифровых вычислительных систем и их архитектурные особенности;
- принципы работы основных логических блоков системы;
- параллелизм и конвейеризацию вычислений;
- классификацию вычислительных платформ;
- принципы вычислений в многопроцессорных и многоядерных системах;
- принципы работы кэщ-памяти;
- повышение производительности многопроцессорных и многоядерных систем энергосберегающие технологии

Перечень формируемых компетенций:

Общие компетенции (ОК):

- OK 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- OК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.

- OK 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.

Профессиональные компетенции (ПК)

- ПК 1.5. Выполнять требования нормативно-технической документации.
- ПК 2.3. Осуществлять установку и конфигурирование персональных компьютеров и подключение периферийных устройств.
- ПК 3.3. Принимать участие в отладке и технических испытаниях компьютерных систем и комплексов, инсталляции, конфигурировании программного обеспечения.

1.4. Количество часов на освоение программы учебной дисциплины максимальной учебной нагрузки студента 101 час, в том числе: обязательной аудиторной учебной нагрузки студента 68 часов; самостоятельной работы студента 33 часа.

СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	101
Обязательная аудиторная учебная нагрузка (всего)	68
в том числе:	
практические занятия	20
Самостоятельная работа обучающегося (всего)	33
Промежуточная аттестация в форме экзамена в 5-м семестр	pe

2.2. Тематический план и содержание учебной дисциплины ОП.14 Архитектура ЭВМ и вычислительных систем

Наименование разделов и тем	Содержание учебного материала, лабораторные работы, практические занятия, самостоятельная работа обучающихся	Объем часов	Уровень освоения
	Раздел 1. Архитектура ЭВМ	64	
Тема 1.1.	Классы ЭВМ. Поколения ЭВМ. Суперкомпьютеры, мэйнфреймы, мини и микроЭВМ, рабочие станции, персональные компьютеры. (Урок- визуализация)	2	2
структура	Характеристики ЭВМ. Быстродействие, разрядность, доступный объём памяти, надёжность.	2	2
ospy stypu	Основные компоненты и блоки ЭВМ. Центральный процессор, оперативная память, интерфейсы, внешние устройства. (Урок-визуализация)	2	2
	Базовые представления об архитектуре ЭВМ. Понятие структуры компьютера и архитектуры. Совместимость ЭВМ на уровне архитектуры.	2	2
	Разновидности архитектур вычислительной техники. Принципы Фон Неймана. Гарвардская архитектура.	2	2
	Основные типы архитектур. Централизованная, иерархическая, магистральная архитектуры. Архитектура ЭВМ на основе чипсета. (Урок- визуализация)	2	2
	Практические занятия: Определение состава оборудования, характеристик и взаимосвязи компонентов материнской платы персонального компьютера. (Работа в малых группах)	6	3
	Самостоятельная работа студента: Проработка конспектов занятий, учебной и специальной технической литературы. Составление доклада, сообщения, реферата. Примерная тематика внеаудиторной самостоятельной работы:	6	
	 ЭВМ разных поколений в СССР Перспективы развития ЭВМ Подходы к оценке скоростных характеристик ЭВМ 		
Тема 1.2.	Понятие центрального процессора. Архитектура процессоров, свойства процессоров, наиболее распостранённые современные процессоры, процессорные сокеты. (Урок- визуализация)	2	2
Архитектура процессоров	Классы процессоров. CISC, RISC, VLIW процессоры	2	2
	Технологии повышения производительности процессоров. Конвейеризация.	2	2
	Практические занятия: Определение типа центрального процессора, его характеристик, возможностей, интерфейса. (Работа в малых группах)	2	3

	Самостоятельная работа студента:	4	
	Проработка конспектов занятий, учебной и специальной технической литературы.		
	Составление доклада, сообщения, реферата. Подготовка к выполнению практической работы		
	Примерная тематика внеаудиторной самостоятельной работы:		
	1. Составление перечня терминов		
	2. Применение различных архитектур процессоров		
Тема 1.3	Основы организации оперативной памяти ЭВМ, адресация памяти. Прямой и обратный порядок байтов.	2	2
Архитектура основной	Расположение слов в памяти. (Урок- визуализация)		
памяти	Динамическая память, Статическая память.	2	2
	Иерархическая организация памяти. Кэш-память 1-го, 2-го и 3-го уровней.	2	2
	Реализация систем основной памяти, модули ОЗУ. Модули оперативной памяти (Урок-визуализация)	2	2
	Практические занятия:	2	3
	Определение типа используемой оперативной памяти, типа модулей, организации памяти (Работа в малых группах)		
	Самостоятельная работа студента:	4	
	Проработка конспектов занятий, учебной и специальной технической литературы.		
	Составление доклада, сообщения, реферата. Подготовка к выполнению практической работы		
	Примерная тематика внеаудиторной самостоятельной работы:		
	1. Составление перечня терминов		
	2. Применение различных архитектур оперативной памяти		
Тема 1.4	Внутренние интерфейсы (шины) РСІ, РСІ-Е, сРСІ, (Урок- визуализация)	2	2
Архитектура внутренних интерфейсов	Архитектура «Северный мост — Южный мост» (Урок- визуализация)	2	2
	Другие подходы к построению архитектур на основе внутренних интерфейсов и чипсетов.	2	2
	Практические занятия:		
	Работа с внутренними интерфейсами на материнской плате (Работа в малых группах)	2	3
	Работа с чипсетом материнской платы. (Работа в малых группах)	2	3
	Самостоятельная работа студента:	4	
	Проработка конспектов занятий, учебной и специальной технической литературы.		
	Составление доклада, сообщения, реферата. Подготовка к выполнению практической работы		
	Примерная тематика внеаудиторной самостоятельной работы:		
	1. Составление перечня терминов		
	2. Применение различных архитектур на основе чипсета		

	Раздел 2. Архитектура вычислительных систем.	37	
Тема 2.1. Архитектура серверов и рабочих станций	Классы и архитектуры вычислительных систем. Понятие вычислительной системы. Цели создания вычислительных систем. Многопроцессорные и многомашинные вычислительные системы. (Уроквизуализация)	2	2
pado ma crangan	Классификация архитектур вычислительных систем с параллельной обработкой данных. Классификация Флинна. Архитектуры ОКОД, ОКМД, МКОД, МКМД.	2	2
	Симметричная многопроцессорная архитектура. Структурная схема вычислительной системы на основе симметричной многопроцессорной архитектуры. Возможности и ограничения архитектуры. (Уроквизуализация)	2	2
	Асимметричная многопроцессорная архитектура. Структурная схема вычислительной системы на основе симметричной многопроцессорной архитектуры. Возможности и ограничения архитектуры.	2	2
	Самостоятельная работа студента: Проработка конспектов занятий, учебной и специальной технической литературы. Составление доклада, сообщения, реферата. Примерная тематика внеаудиторной самостоятельной работы: 1. Оценка возможностей применения архитектур с параллельной обработкой для выполнения различных задач на серверах	5	
Тема 2.2. Архитектура	Массивно-параллельная архитектура. Структура узла вычислительной системы на базе MPP. Коммуникация узлов. Возможности и применение архитектуры.	2	2
высокопроизводительны П	Параллельная архитектура с векторными процессорами. Признаки PVP-систем. Классы задач, эффективно решаемые на PVP.	2	2
	Кластерная архитектура. Состав узла кластера. Типы кластеров: тип I и тип II. Типологии связи узлов в кластерах. Возможности и применение архитектуры. (Урок- визуализация)	2	2
	Распределённые вычисления. GRID-технология (Урок- визуализация)	2	2
	Практические занятия: Участие в работе проектов распределённых вычислений в системе BOINC (Работа в малых группах)	4	3
	Организация вычислительного кластера	2	3
	Самостоятельная работа студента: Проработка конспектов занятий, учебной и специальной технической литературы. Подготовка к выполнению практической работы. Составление доклада, сообщения, реферата. Примерная тематика внеаудиторной самостоятельной работы: 1. Участие в grid-вычислениях Работа с вычислительной фермой	10	

УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к материально-техническому обеспечению

Реализация программы дисциплины требует наличия учебной аудитории и лаборатории «Сборки, монтажа и эксплуатации средств вычислительной техники».

Оборудование учебной аудитории:

- посадочные места по количеству обучающихся;
- АРМ преподавателя;
- комплект учебно-наглядных пособий.

Технические средства обучения:

- АРМ преподавателя;
- локальная вычислительная сеть с подключением к Internet.

Оборудование лаборатории:

- рабочее место преподавателя;
- посадочные места по количеству обучающихся;
- персональные компьютеры с установленным ПО, монтажные инструменты, диагностические приборы.

3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, интернет-ресурсов, дополнительной литературы.

Основная литература:

- 1. Толстобров, А. П. Архитектура ЭВМ : учебное пособие для вузов / А. П. Толстобров. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2021. 154 с. (Высшее образование). ISBN 978-5-534-12377-7. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/476512 (дата обращения: 30.06.2021).
- 2. Новожилов, О. П. Архитектура ЭВМ и систем в 2 ч. Часть 1 : учебное пособие для вузов / О. П. Новожилов. Москва : Издательство Юрайт, 2021. 276 с. (Высшее образование). ISBN 978-5-534-07717-9. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/474545 (дата обращения: 30.06.2021).
- 3. Новожилов, О. П. Архитектура ЭВМ и систем в 2 ч. Часть 2 : учебное пособие для вузов / О. П. Новожилов. Москва : Издательство Юрайт, 2021. 246 с. (Высшее образование). ISBN 978-5-534-07718-6. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/474546 (дата обращения: 30.06.2021).

Дополнительная литература:

- 1. Максимов Н.В., Попов И.И., Партыка Т.Л. Архитектура ЭВМ и вычислительных систем. 5-е изд. перераб. и доп. Учебник. М.: ФОРУМ: ИНФРА-М, 2018. 511 с.
- 2. Скребнев П. В. Электронный курс "Архитектура ЭВМ и вычислительных систем" / Режим доступа: http://www.portal.ratkga.ru/course/view.php?id=2 / 2014 г.

Интернет – ресурсы:

1. Российское образование: Федеральный портал: http://www.edu.ru/

- 2. Информационная система "Единое окно доступа к образовательным ресурсам": http://window.edu.ru/library
- 3. Официальный сайт Министерства образования и науки РФ: http://www.mon.gov.ru
- 4. Федеральный центр информационно-образовательных ресурсов: http://fcior.edu.ru
- 5. Единая коллекция цифровых образовательных ресурсов: http://school-collection.edu.ru
- 6. Образовательная платформа Юрайт. Для вузов и ссузов: https://urait.ru
- 7. Научная электронная библиотека: http://elibrary.ru
- 8. Образовательный портал Рыльского АТК филиала МГТУ ГА http://www.portal.ratkga.ru

КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, домашних работ.

Результаты обучения (освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения
Умения	оценки результатов обучения
 - определять оптимальную конфигурацию оборудования и характеристики устройств для конкретных задач; - идентифицировать основные узлы персонального компьютера, разъемы для подключения внешних устройств; 	практические работы индивидуальные задания контрольные вопросы
Знания	
- построение цифровых вычислительных систем	_
и их архитектурные особенности;	карточки-задания
- принципы работы основных логических	фронтальные опросы,
блоков системы;	индивидуальные беседы
- параллелизм и конвейеризацию вычислений;	контрольные вопросы
- классификацию вычислительных платформ;	индивидуальные задания
- принципы вычислений в многопроцессорных и	
многоядерных системах;	
-принципы работы кеш-памяти;	
- повышение производительности	
многопроцессорных и многоядерных систем	
энергосберегающие технологии	